Math 564: Advance Analysis 1
Lecture 3
last tive ue proved:
(laim (a). If a eglinder is partitioned into uglinders of tixed base-length, then \tilde{j}_{p} on this pactition is firitel, calditive.
Claim (b). For any two tianterartitions into cylicders Pal Q of a dopen ut $u \in A$, we have

$$
\sum_{P \in P} \tilde{\mu}_{p}(P)=\sum_{Q \in Q} \tilde{\mu_{p}}(Q) .
$$

Proof. Le Q be a comonon nofivenent of the patitions P al Q, i.e. each $R \in Q$ is a cylicder contained in a piece in P and in a piece in Q s.t. $\cup R Q=Q$. Lt $n \geqslant$ base-length (R) for all $R \in R$, and retine R further to a partition R^{\prime} inte ugliscless it lase length U. The

$$
\sum_{P \in P} \tilde{\gamma}_{p}(P) \stackrel{(a)}{=} \sum_{P \in P} \sum_{\substack{R \in R^{\prime} \\ R \subseteq P}} \tilde{\mu}_{p}(R)=\sum_{R \in R^{\prime}} \tilde{\gamma}_{p}(R)=\sum_{Q \in Q} \sum_{\substack{R \in R^{\prime} \\ R \in Q}} \tilde{\gamma}_{p}(R) \stackrel{(a)}{=} \sum_{Q \in Q} \tilde{\mu}_{p}(Q) .
$$

This shans that μ_{p} is well-difined on A and also int j_{p} is tinitely alditive.
(lain (c). μ_{p} is antromatically thly additive becase no dopen et $A \in A$ can be patritioned into infinidely may other noneonts dopen whs.

Prot. If $A=\bigcup_{2} A_{n} A_{n}^{\varnothing}$, A and the A_{n} open, then A is compact al $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is an open over, hence has a finite rabrovec, coctcadicticy hat A_{a} are dirjoist and noceupty.

His shows Vt μ_{p} is a pueneasure on coper sett.
Permeasione on box-algebira in \mathbb{R}^{d}. It A be the algebra generated by boxes in \mathbb{R}^{d}, have each $A \in A$ is a finite disjoint union of boxes. For an interval I,

$$
\ln (\bar{I}):=\operatorname{right}(I)-\operatorname{left}(I),
$$

 $A \in A$
which could be infinite. Define $\tilde{\lambda}$ on boxes hos

$$
\tilde{\lambda}\left(I_{1} \times I_{2} \times \ldots x I_{d}\right):=\ln \left(I_{1}\right) \cdot \ln \left(I_{2}\right) \cdot \ldots \operatorname{lh}\left(I_{d}\right) .
$$

Extend this to $A b_{y} \lambda(A):=\sum_{n<k} \tilde{\lambda}\left(B_{n}\right)$, where $A \in A$ wal $\left\{B_{n}\right\}_{n<k}$ is a partition of A
into boxes. We weed to show tho μ is well-dhited and we do so the sane was, using geid-paptitions instead of partitions into sane baserleugth cyli-ders.

A grid-partition of a box $B=I_{1} \times I_{2} \times \ldots \times I_{d}$ is a finite partition P in ho boxes of the following form: partition each $I_{k}=\bigcup_{n<N_{k}} I_{k}^{n}$,
 and tale

$$
P:=\left\{I_{1}^{n_{1}} \times I_{2}^{n_{2}} \times \ldots \times I_{d}^{n_{d}}:\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in N_{1} \times N_{2} \times \ldots \times N_{d}\right\},
$$

where me treat $N=\{0,1, \ldots, N-1\}$,
(aim (a). $\tilde{\lambda}$ is additive on grid-pastitiong of a box, i.e. for a box B and a grid-partion p of B,

$$
\tilde{\lambda}(B)=\sum_{p \in \rho} \tilde{\lambda}(p)
$$

Piaf: Fillows by induction on d, using the distributivity law $\left(a_{1}+\cdots+a_{n}\right) \cdot\left(b_{1}+\cdots+b_{m}\right)=\sum_{i \leq n j \leq m} a_{i} b_{j}$,
Claim (b). Lt $p d Q$ be finite partitions of a set $A \in A$. Rem

$$
\sum_{P \in Q} \tilde{\lambda}(P)=\sum_{Q \in Q} \tilde{\lambda}(Q)
$$

Plot. The save as Le (lain (b) tor coopers in $2^{\text {V }}$-NW.
This chows the λ is wel-defied ad finitely additive on A. To show ctbl additivity, let's first record general properties of finikes additive measures.

Prop. let g be a fir. additive measure on an algchia A. Ten it is: (i) monotone: $A \leq B \Rightarrow \mu(A) \leq \mu(B)$ for all $A, B \in \nsim$.
(ii) cthly supaddive: $\mu\left(\bigsqcup_{n \in \mathbb{N}} A_{n}\right) \geqslant \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$ for all pairwise chisjoint $A_{n} \in \notin$ with
(iii) $\mathcal{J}\left(\cup_{n<k} A_{n}\right) \leq \sum_{n<k} \mu\left(A_{n}\right) \quad$ for all $A_{1}, \ldots, A_{k} \in \mathcal{A}$.

Proof. (i) $\quad J(B)=\mu(A \cup(B \backslash A))=\mu(A)+\mu(B \backslash A) \geqslant \mu(A)$.
(ii) $\mu\left(\bigcup_{n \in \mathbb{N}} A_{-}\right) \geqslant \mu\left(\bigcup_{n<N} A_{n}\right)=\sum_{n<N} \mu\left(A_{c}\right) \ngtr \sum_{N \rightarrow a} \mu\left(A_{n}\right)$.
(iii) $\bigcup_{n<k} A_{n}=\bigsqcup_{n<k} A_{n}^{\prime}$, where $A_{n}^{\prime}:=A_{n} \backslash\left(\bigcup_{i<n} A_{i}\right)$, we call $\operatorname{Rin}_{n i}$ disiocutitication.

Then $\mu\left(\cup_{n<k} A_{n}\right)=\mu\left(\bigcup_{n<k} A_{n}^{\prime}\right)=\sum_{n<k} \mu\left(A_{n}^{\prime}\right) \leq \sum_{n<k} \mu\left(A_{n}\right)$.
(lain (c). λ is cthly additive.
Proof. First let's asscal B is a bounded box al $B=\bigcup_{n \in \mathbb{N}} B_{n}$, sere the B a are disjoint boxes. We wish INt B vas dosed (hence workout) al the B_{n} were open (hence form ar opes coxed). We replace B by a lased box $B^{\prime} \subseteq B$ sit. $\lambda\left(B \backslash B^{\prime}\right)<\frac{\varepsilon}{2}$.
W_{e} also replace each B_{n} by an open box $B_{n}^{\prime} \supseteq B_{n}$ st. $\lambda\left(B_{n}^{\prime} \backslash B_{n}\right)<\frac{\Sigma}{2 \cdot 2^{n+1}}$ Nor $\lambda(B) \approx_{\varepsilon / 2} \lambda\left(B^{\prime}\right)$ al $\sum_{n \in \mathbb{N}} \lambda\left(B_{n}{ }^{\prime}\right) \approx_{\xi / 2} \sum_{n \in \mathbb{N}} \lambda\left(B_{n}\right)$.
Also B^{\prime} is cogent al $\left\{B_{n}^{\prime}\right\}_{u \in \mathbb{N}}$ is ap open ever of B^{\prime} so it has a finite inbuover $\left\{B_{a}^{\prime}\right\}_{n<N}$. Then

$$
\lambda(B) \approx_{c_{/ 2}} \lambda\left(B^{\prime}\right) \leq \sum_{b_{b}(i)}^{\sum_{n<N}\left(\cup B_{n}^{\prime}\right) \leq \sum_{n<N} \lambda\left(B_{n}^{\prime}\right) \leq \sum_{n \in \mathbb{N}} \lambda\left(B_{n}^{\prime}\right) \approx_{\varepsilon / 2} \sum_{n \in \mathbb{N}} \lambda\left(B_{n}\right) . .}
$$

Thus, $\lambda(B) \leq \sum_{n \in \mathbb{N}} \lambda\left(B_{n}\right)+\mathcal{E}$, hence $\lambda(B) \leq \sum_{n \in \mathbb{N}} \lambda\left(B_{a}\right)$, so λ is ctbly sub-additive, ace therefore ctbly additive by Property (ii) above. The general case of when B is a finite union of potentially unbounded boxes reduces to the case we handled and is left as HW.

Having a preneasire on an algebra A, we would like to get a reassure on $\langle A\rangle \sigma$ al this can alvags be dove:

Carathéodory's extension theorem. Even preneasare μ on an algebra A admits an extension to a measure on $\left\langle f_{\sigma}\right\rangle_{\sigma}$.
If μ is σ-finite, then his extension is unique and still denote it μ.
To prove this, we need the following nation:

Def. Let $A \subseteq P(x)$ be a wollection containing \varnothing aal covering X. Let $m: A \rightarrow[0, \infty]$. The onter weassine iccluced by m is
the $\operatorname{map} m^{*}: P(x) \rightarrow[0, \infty]$ dofined bs

$$
m^{*}(S):=\inf \left\{\sum_{n \in \mathbb{N}} m\left(A_{n}\right):\left\{A_{n}\right\}_{n \in \mathbb{N}} \leq A_{1}, \bigcup_{n \in \mathbb{N}} A_{n} \geq S\right\}
$$

Prop. ine onter is:
(a) monotone: $A \subseteq B \Rightarrow m^{*}(A) \leq m^{*}(B)$ Gor all $A, B \in P(x)$.
(b) ctbly subadditive: $m^{*}\left(\bigcup_{n \in \mathbb{N}} B_{n}\right) \leq \sum_{n \in \mathbb{N}} m^{*}\left(B_{n}\right)$ tor all $B_{0}, B_{1}, \ldots \in P(x)$. $(a+b) m^{*}\left(\bigcup_{n \in \mathbb{N}} B_{n}\right) \leq \sum_{n \in \mathbb{N}} m^{*}\left(B_{n}\right)$.
Proot. HWW.

